arrière-plan

Nouvelles

Nouvelle norme d'inspection à l'ère de l'industrie 4.0

Tubes céramiques ondulés spéciaux, tubes métal-céramique et tubes en verre pour instruments d'analyse, adaptés à divers modèles de DRX, de FRX, d'analyseurs de cristaux et d'instruments d'orientation, en Chine et à l'étranger. Un tube à rayons X est un dispositif électronique sous vide qui génère des rayons X par impact d'électrons à grande vitesse sur une cible métallique. Sa structure, son principe et son application impliquent diverses caractéristiques techniques. 1. Structure de base du tube à rayons X (1) Cathode (source d'émission d'électrons) Composé d'un filament de tungstène, le tube à rayons X chauffe et émet des électrons après sa mise sous tension. Il est enroulé autour d'une tête de cathode focalisée pour contrôler la direction du faisceau d'électrons. La température du filament est d'environ 2 000 K et l'émission d'électrons est régulée par le courant. (2) Anode (matériau cible) Habituellement, les métaux à point de fusion élevé (tels que le tungstène, le molybdène, le rhodium, etc.) sont utilisés pour résister au bombardement d'électrons à haute énergie et générer des rayons X. Contient une tête d'anode (surface cible), un capuchon d'anode, un anneau en verre et une poignée d'anode, responsables de la dissipation de la chaleur (par rayonnement ou conduction) et de l'absorption des électrons secondaires. (3) Coque à vide et fenêtre La coque en verre ou en céramique maintient un vide poussé (au moins 10⁻⁴ Pa) pour éviter la diffusion des électrons. Les matériaux des fenêtres nécessitent une faible absorption des rayons X, généralement des feuilles de béryllium, de l'aluminium ou du verre Lindemann. 2. Principe de fonctionnement du tube à rayons X (1) Accélération et impact des électrons Les électrons émis par le filament cathodique sont accélérés par une haute tension (de l'ordre du kilovolt au mégavolt) et entrent en collision avec le matériau cible de l'anode. Le processus de conversion de l'énergie cinétique électronique en rayons X comprend : Rayonnement de freinage : Spectre continu de rayons X émis lorsque les électrons décélèrent ou dévient. Rayonnement caractéristique : rayons X (tels que les raies Kα et Kβ) émis par les transitions électroniques dans la couche interne du matériau cible. (2) Conversion et efficacité énergétiques Seulement environ 1 % de l'énergie des électrons est convertie en rayons X, et le reste est dissipé sous forme de chaleur, nécessitant un refroidissement forcé (comme une conception d'anode rotative). 3. Classification et scénarios d'application des tubes à rayons X (1) En générant des moyens électroniques Tube gonflable : un type ancien qui s'appuie sur l'ionisation du gaz pour générer des électrons, avec une faible puissance et une courte durée de vie (aujourd'hui obsolète). Tube à vide : l'environnement moderne à vide élevé améliore l'efficacité et la stabilité électroniques. (2) Par objectif Dans le domaine médical, les tubes à rayons X diagnostiques (comme les examens dentaires et mammaires) et thérapeutiques (comme la radiothérapie) utilisent souvent des anodes rotatives pour augmenter la densité de puissance. Essais industriels : contrôles non destructifs, analyse de la structure des matériaux, etc., avec un accent sur la haute pénétration (rayons X durs). (3) Selon la méthode de refroidissement Anode fixe : structure simple, adaptée aux scénarios de faible puissance. Anode rotative : la surface cible tourne à grande vitesse (jusqu'à 10 000 tours par minute) pour améliorer la dissipation de la chaleur et prendre en charge une puissance de sortie élevée. 4. Caractéristiques de performance et limites des tubes à rayons X (1) Avantages Faible coût, petite taille et simplicité d'utilisation, adapté aux tests médicaux et industriels de routine. Adaptation flexible des matériaux cibles (tels que le tungstène, le molybdène et le cuivre) pour répondre aux différents besoins énergétiques. (2) Limitations Faible luminosité et collimation, angle de divergence des rayons X important, nécessitant des collimateurs supplémentaires. Le spectre énergétique est continu et contient des raies caractéristiques, nécessitant un filtrage ou une monochromatisation (par exemple, l'utilisation de filtres en nickel pour supprimer les raies Kβ). 5. Comparaison entre les tubes à rayons X et les sources de rayonnement synchrotron (1) Luminosité et flux Tube à rayons X : faible luminosité, adapté aux tests de routine. Source lumineuse à rayonnement synchrotron : luminosité 106 à 1012 fois supérieure, adaptée à la recherche de pointe comme la nano-imagerie et la cristallographie des protéines. (2) Caractéristiques spectrales Tube à rayons X : raies caractéristiques discrètes + spectre continu, plage d'énergie limitée par la tension d'accélération. Rayonnement synchrotron : large spectre continu (de l'infrarouge aux rayons X durs), accordable avec précision. (3) Caractéristiques temporelles Tube à rayons X : Impulsions continues ou de niveau microseconde (cible rotative). Rayonnement synchrotron : impulsions de niveau femtoseconde, adaptées à l'étude des processus dynamiques tels que les réactions chimiques. 6. Paramètres techniques du tube à rayons X (1) Types de matériaux cibles facultatifs : Cu, Co, Fe, Cr, Mo, Ti, W, etc. (2) Type de mise au point : 0,2 × 12 mm2 ou 1 × 10 mm2 ou 0,4 × 14 mm2 (mise au point fine) (3) Puissance de sortie plus élevée : 2,4 kW ou 2,7 kW Globalement, les tubes à rayons X dominent des domaines tels que le diagnostic médical et les tests industriels en raison de leur praticité et de leur économie, mais sont limités par des problèmes de performances. Pour les scènes exigeant une haute résolution et une luminosité élevée (comme la recherche scientifique de pointe), il est nécessaire de recourir à des technologies avancées comme les sources de rayonnement synchrotron. Les axes de développement futurs comprennent l'amélioration du rendement de conversion énergétique, l'optimisation des structures de dissipation thermique et le développement de sources de rayons X miniaturisées.

2025/05/07
LIRE LA SUITE
Les secrets techniques derrière la haute performance

Tubes à rayons X spécialement conçus pour les instruments d'analyse : 1. Il existe différents types de matériaux cibles : différents matériaux cibles peuvent être sélectionnés en fonction des différents besoins d'analyse, tels que le tungstène, le cuivre, le cobalt, le fer, le chrome, le molybdène, le titane, etc. Ces matériaux cibles peuvent générer des rayons X avec différentes caractéristiques pour s'adapter à l'analyse de diverses substances. 2. Types de mise au point riches : il existe plusieurs types de mise au point parmi lesquels choisir, comme la mise au point fine, qui peut répondre aux exigences de test de différentes résolutions et précisions. Par exemple, des points focaux fins de 0,2 × 12 mm², 1 × 10 mm² ou 0,4 × 14 mm² peuvent aider à améliorer la précision et l'exactitude de l'analyse. 3. Puissance de sortie élevée : une puissance de sortie élevée peut garantir que le tube à rayons X dispose d'une énergie suffisante pour exciter l'échantillon pendant le fonctionnement, ce qui permet d'obtenir des résultats d'analyse clairs. La puissance de sortie de certains tubes à rayons X spécialisés peut atteindre 2,4 kW ou 2,7 kW. 4. Matériaux de structure spéciaux : tubes en céramique ondulés, tubes en métal-céramique, tubes en verre et autres matériaux sont utilisés, qui ont une bonne résistance aux températures élevées, à la corrosion et aux radiations, garantissant un fonctionnement stable des tubes à rayons X dans des environnements de travail complexes. Dans le même temps, ces matériaux contribuent également à améliorer les performances de dissipation thermique des tubes à rayons X et à prolonger leur durée de vie. 5. Services personnalisés : les clients peuvent personnaliser en fonction de leurs besoins spécifiques, y compris la conception, la configuration et les matériaux d'anode du tube à rayonnement, pour répondre à des exigences d'analyse spécifiques. 6. Haute fiabilité : les tubes à rayons X utilisés par Dandong Tongda Technology Co., Ltd. assurent un approvisionnement fiable en tubes à rayons X, garantissant la fourniture continue de tubes à rayons X de haute qualité pendant la durée de vie de l'instrument et réduisant les temps d'arrêt de l'instrument causés par les défaillances des tubes. 7. Largement applicable : convient à divers modèles de XRD (diffractomètre à rayons X), XRF (spectromètre à fluorescence X), analyseur de cristal, analyseur d'orientation et autres instruments d'analyse au pays et à l'étranger, ainsi qu'aux domaines industriels tels que les tests non destructifs, l'inspection, la mesure, etc. En résumé, les tubes à rayons X spécialement conçus pour les instruments d'analyse présentent les caractéristiques suivantes : matériaux cibles divers, points focaux riches, puissance élevée, matériaux structurels spéciaux, personnalisation, fiabilité élevée et larges applications. Ces caractéristiques leur permettent de répondre aux besoins d'analyse de diverses substances complexes et sont largement utilisés dans la recherche scientifique, l'industrie et d'autres domaines.

2024/10/25
LIRE LA SUITE
Paramètres techniques du diffractomètre à rayons X de la série TD

Dandong Tongda Technology Co., Ltd. est une entreprise professionnelle qui produit des produits à rayons X. Son produit principal est l'instrument d'analyse à rayons X et, en 2013, elle est devenue le maître d'œuvre du projet national de développement d'instruments et d'équipements scientifiques majeurs pour l'instrument de diffraction monocristallin à rayons X spécial du ministère des Sciences et Technologies de Chine. Notre entreprise adhère aux principes du client d'abord, du produit d'abord et du service d'abord, insiste sur l'orientation humaine et dispose d'une équipe technologique solide. Nous nous engageons à fournir aux utilisateurs des produits de haute technologie de la plus haute qualité avec une technologie de pointe et à fournir un support et des services solides aux utilisateurs avec des institutions de conseil technique et de service après-vente efficaces.

2024/09/21
LIRE LA SUITE
DRX

La diffraction des rayons X est une technique de base pour l’étude de la structure solide, qui peut fournir des informations spectrales uniques sur la composition chimique et la disposition structurelle des échantillons.

2024/06/03
LIRE LA SUITE
De puissants rayons X focalisés sont générés à l’aide de la technologie de mise en forme des ondes électroniques

Des scientifiques dirigés par NTU Singapour ont développé et simulé une nouvelle méthode d'économie d'énergie capable de produire des rayons X hautement concentrés et finement contrôlés, mille fois plus puissants que les méthodes conventionnelles.

2024/05/17
LIRE LA SUITE
La distribution du champ de rayonnement du détecteur de rayons X pour les tests non destructifs

L'intensité des rayons X des contrôles non destructifs en un point de l'espace est la somme du nombre de photons et du produit énergétique sur une unité de surface perpendiculaire à la direction de propagation des rayons X en unité de temps.

2024/02/13
LIRE LA SUITE
À propos du goniomètre à diffractomètre à rayons X

En analyse aux rayons X, instrument utilisé pour mesurer l'angle entre un faisceau de rayons X incident et un faisceau de rayons X diffracté. Le diffractomètre cartographie automatiquement la variation de l'intensité de diffraction avec l'angle 2θ.

2024/01/01
LIRE LA SUITE
À propos de la construction du diffractomètre

Le diffractomètre à rayons X polycristallin, également connu sous le nom de diffractomètre à poudre, est généralement utilisé pour mesurer des matériaux en vrac en poudre, en métal polycristallin ou en polymère.

2023/12/28
LIRE LA SUITE
ion de cible de test d'austénite résiduelle

Les conditions de puissance dépendent du tube à rayons X, du matériau cible et du type de foyer. Bien que les cibles Cu soient largement utilisées pour la diffraction, leur utilisation pour l’analyse de l’austénite résiduelle n’est pas recommandée en raison de la forte fluorescence des matériaux à base de fer.

2023/11/20
LIRE LA SUITE
Problèmes courants de DRX

Par diffraction des rayons X du matériau et analyse de son diagramme de diffraction, des informations telles que la composition du matériau, la structure ou la morphologie des atomes ou molécules internes sont obtenues.

2023/10/28
LIRE LA SUITE
XRD pour les équipements de caractérisation des matériaux

La diffraction des rayons X (DRX) est un moyen de recherche permettant d'obtenir des informations telles que la composition d'un matériau, la structure ou la forme d'un atome ou d'une molécule interne en analysant son diagramme de diffraction par diffraction des rayons X.

2023/10/10
LIRE LA SUITE
Obtenez le dernier prix? Nous répondrons dès que possible (dans les 12 heures)
This field is required
This field is required
Required and valid email address
This field is required
This field is required