
- maison
- >
Nouvelles
1. Fonction du diffractomètre monocristallin : Le diffractomètre monocristallin à rayons X TD-5000 est principalement utilisé pour déterminer la structure spatiale tridimensionnelle et la densité du nuage électronique des substances cristallines telles que les complexes inorganiques, organiques et métalliques, et pour analyser la structure de matériaux spéciaux tels que le maclage, les cristaux non commensurables, les quasi-cristaux, etc. Déterminez l'espace tridimensionnel précis (y compris la longueur de liaison, l'angle de liaison, la configuration, la conformation et même la densité électronique de liaison) de nouvelles molécules composées (cristallines) et la disposition réelle des molécules dans le réseau ; Le diffractomètre monocristallin à rayons X peut fournir des informations sur les paramètres de la cellule cristalline, le groupe spatial, la structure moléculaire cristalline, les liaisons hydrogène intermoléculaires et les interactions faibles, ainsi que des informations structurelles telles que la configuration et la conformation moléculaires. Le diffractomètre monocristallin à rayons X est largement utilisé dans la recherche analytique en cristallographie chimique, biologie moléculaire, pharmacologie, minéralogie et science des matériaux. Le diffractomètre monocristallin à rayons X est un produit de haute technologie financé par le ministère des Sciences et Technologies du Projet national de développement d'instruments et d'équipements scientifiques majeurs de Chine, dirigé par Dandong Tongda Technology Co., Ltd., comblant le vide dans le développement et la production de diffractomètres monocristallins en Chine. 2. Caractéristiques du diffractomètre monocristallin : L'ensemble de la machine adopte la technologie de contrôle du contrôleur logique programmable (PLC) ; Facile à utiliser, système de collecte en un clic ; Conception modulaire, accessoires plug and play, pas besoin d'étalonnage ; Surveillance en ligne en temps réel via écran tactile, affichage de l'état de l'instrument ; Générateur de rayons X haute puissance avec des performances stables et fiables ; Dispositif de verrouillage électronique de porte en plomb, double protection. 3. Précision du diffractomètre monocristallin : Précision de répétabilité de l'angle 2 θ : 0,0001 ° ; Angle de pas minimal : 0,0001 ° ; Plage de contrôle de température : 100 K-300 K ; Précision de contrôle : ± 0,3 K. 4. Instrument de mesure d'angle utilisé dans le diffractomètre monocristallin : L'utilisation de la technique des quatre cercles concentriques garantit que le centre de l'instrument de mesure d'angle reste inchangé, quelle que soit la rotation, ce qui permet d'obtenir des données extrêmement précises et complètes. La technique des quatre cercles concentriques est indispensable au balayage d'un diffractomètre monocristallin conventionnel. 5. Détecteur bidimensionnel à grande vitesse utilisé dans le diffractomètre monocristallin à rayons X : Le détecteur combine les technologies clés du comptage de photons uniques et de la technologie à pixels mixtes pour obtenir une qualité de données optimale tout en garantissant une faible consommation d'énergie et un refroidissement minimal. Il est utilisé dans divers domaines, tels que le rayonnement synchrotron et les sources lumineuses conventionnelles de laboratoire, éliminant efficacement les interférences dues au bruit de lecture et au courant d'obscurité. La technologie à pixels mixtes permet de détecter directement les rayons X, de faciliter la distinction du signal et de fournir des données de haute qualité. 6. Équipement à basse température utilisé dans le diffractomètre monocristallin à rayons X : Les données recueillies grâce à un équipement à basse température produisent des résultats plus optimaux. Grâce à cet équipement, des conditions plus favorables peuvent être créées pour permettre aux cristaux indésirables d'obtenir des résultats optimaux, et aux cristaux idéaux d'obtenir des résultats encore plus optimaux. Plage de contrôle de température : 100 K~300 K ; Précision de contrôle : ± 0,3 K ; Consommation d'azote liquide : 1,1~2 litres/heure ; 7. Accessoire optionnel, lentille de focalisation à film multicouche : Puissance du tube à rayons X : 30 W ou 50 W, etc. Divergence : 0,5 à 1 mrad ; Matériau cible du tube à rayons X : cible Mo/Cu ; point focal : 0,5 à 2 mm.
Le porte-échantillon rotatif d'un diffractomètre à rayons X est un élément clé pour un réglage et une fixation précis de la position de l'échantillon. Ce dernier peut pivoter sur son propre plan, ce qui est avantageux pour les erreurs dues aux grains grossiers. Pour les échantillons texturés et cristallographiques, le porte-échantillon rotatif assure une bonne reproductibilité de l'intensité de diffraction et élimine l'orientation préférentielle. Principe de fonctionnement du porte-échantillon rotatif : Lorsque le diffractomètre à rayons X fonctionne, les rayons X de haute énergie générés par la source sont irradiés sur l'échantillon fixé sur la platine rotative. En raison de la structure cristalline et des paramètres de maille spécifiques de l'échantillon, les rayons X subissent des phénomènes de diffusion, d'absorption et de diffraction lors de leur interaction avec l'échantillon, phénomènes qui se produisent conformément à l'équation de Bragg. Le porte-échantillon rotatif peut pivoter à des angles plus petits selon le réglage, permettant ainsi à l'échantillon de recevoir des rayons X sous différents angles et d'obtenir ainsi des diagrammes de diffraction sous différents angles. Ainsi, le détecteur peut mesurer l'intensité des rayons X après diffraction de l'échantillon et la convertir en signal électrique transmis à l'ordinateur pour le traitement des données. La fonction principale du porte-échantillon rotatif est : Méthode de rotation : axe β (plan d'échantillonnage) Vitesse de rotation : 1 à 60 tr/min Petite largeur de pas : 0,1 º Mode de fonctionnement : Rotation à vitesse constante pour le balayage des échantillons (étape, continu) Avantages du porte-échantillon rotatif : Le porte-échantillon rotatif peut améliorer la précision des données de diffraction : pour les échantillons de poudre ou de particules de forme irrégulière, la caractéristique d'orientation préférentielle est susceptible de se produire lors de la préparation conventionnelle des échantillons de poudre, ce qui entraîne des écarts dans la distribution de l'intensité de diffraction et affecte la précision de l'analyse des résultats. La rotation du porte-échantillon permet de déplacer l'échantillon selon une certaine forme dans un espace approprié, éliminant ainsi dans une certaine mesure l'influence de l'orientation préférentielle et améliorant ainsi la précision des données de diffraction. Le porte-échantillon rotatif s'adapte à divers besoins d'essai : il peut s'adapter à différents types d'instruments de mesure d'angle par diffraction des rayons X, tels que les instruments de mesure d'angle vertical, les équipements de diffraction sur poudre compacts à faible consommation, etc., ce qui facilite la réalisation de divers essais. De plus, il peut s'adapter aux exigences de divers échantillons et conditions d'essai en ajustant des paramètres tels que la vitesse et la direction. Le porte-échantillon rotatif peut étendre les capacités d'analyse de l'instrument : de nouveaux types de platines d'échantillons rotatives sont constamment développés et appliqués, tels que certaines platines d'échantillons pour l'analyse par diffraction électrochimique des rayons X in situ, qui peuvent surveiller et analyser les changements de matériaux dans différents environnements ou conditions en temps réel, élargissant ainsi les capacités d'analyse des équipements de diffraction des rayons X. En résumé, le porte-échantillon rotatif dans le diffractomètre à rayons X est essentiel pour obtenir avec précision des informations sur la structure cristalline des substances. Le porte-échantillon rotatif peut non seulement améliorer la précision des données de diffraction, mais également s'adapter à divers besoins de test et étendre les capacités analytiques de l'instrument.
Dans le diffractomètre à rayons X, les accessoires de mesure intégrés multifonctions sont essentiels pour améliorer considérablement la fonctionnalité et la flexibilité de l'instrument. Utilisés pour l'analyse des films sur cartes, blocs et substrats, ils permettent d'effectuer des tests tels que la détection de phase cristalline, l'orientation, la texture, la contrainte et la structure plane des films minces. Aperçu de base des accessoires de mesure intégrés multifonctionnels : Définition : Il s'agit d'un terme général désignant une série de dispositifs ou de modules supplémentaires utilisés dans un diffractomètre à rayons X pour étendre les fonctions de l'instrument, améliorer la précision et l'efficacité des mesures. Objectif : Ces accessoires visent à permettre au diffractomètre à rayons X de répondre à une plus large gamme de besoins expérimentaux et de fournir des informations plus complètes et plus précises sur la structure des matériaux. Les caractéristiques fonctionnelles des accessoires de mesure intégrés multifonctionnels : Effectuer des tests de diagramme polaire en utilisant des méthodes de transmission ou de réflexion ; Les tests de résistance peuvent être effectués soit en utilisant la méthode d’inclinaison parallèle, soit en utilisant la même méthode d’inclinaison ; Test de couche mince (rotation dans le plan de l'échantillon). Caractéristiques techniques des accessoires de mesure intégrés multifonctionnels : Haute précision : ils utilisent généralement une technologie de détection et des systèmes de contrôle avancés pour garantir une haute précision et une répétabilité des mesures. Automatisation : de nombreux accessoires prennent en charge les opérations automatisées et peuvent être intégrés de manière transparente à l'hôte du diffractomètre à rayons X pour réaliser une mesure en un clic. Conception modulaire : permet aux utilisateurs de sélectionner et de combiner différents modules d'accessoires en fonction de leurs besoins réels. Domaines d'application des accessoires de mesure intégrés multifonctionnels : Largement utilisé dans des domaines tels que la science des matériaux, la physique, la chimie, la biologie et la géologie ; Évaluation des structures d'assemblage métalliques telles que les plaques laminées ; Evaluation de l'orientation de la céramique ; Évaluation de l'orientation prioritaire des cristaux dans des échantillons de films minces ; Essais de contraintes résiduelles de divers matériaux métalliques et céramiques (évaluation de la résistance à l'usure, de la résistance à la coupe, etc.) ; Essais de contraintes résiduelles de films multicouches (évaluation du décollement du film, etc.) ; Analyse de l'oxydation de surface et des films de nitrure sur des matériaux supraconducteurs à haute température tels que des films minces et des plaques métalliques ; Verre Si, Analyse de films multicouches sur substrats métalliques (films minces magnétiques, films durcissants de surface métalliques, etc.) ; Analyse de matériaux de galvanoplastie tels que les matériaux macromoléculaires, le papier et les lentilles. Les accessoires de mesure multifonctionnels intégrés au diffractomètre à rayons X sont essentiels pour améliorer les performances de l'instrument. Ils optimisent non seulement les fonctionnalités de l'instrument, mais aussi la précision et l'efficacité des mesures, offrant aux chercheurs des méthodes d'analyse des matériaux plus complètes et plus approfondies. Grâce aux progrès technologiques constants, ces accessoires continueront de jouer un rôle important dans la promotion de la recherche scientifique dans des domaines connexes et permettront de nouvelles avancées.
Les accessoires pour diffractomètres à petit angle sont des accessoires importants utilisés dans les diffractomètres à rayons X. Les accessoires pour diffractomètres à petit angle permettent de prendre des mesures de diffraction des rayons X dans une plage d'angle très réduite, de 0° à 5°, pour tester l'épaisseur des films multicouches nanométriques. Ils jouent un rôle important dans des domaines tels que la science des matériaux, la physique, la chimie et la biologie. Types et caractéristiques courants : Accessoire pour film mince à lumière parallèle : cet accessoire peut générer des faisceaux de rayons X parallèles et convient aux mesures de diffraction à petit angle d'échantillons de films minces. Il peut améliorer la précision et la résolution des mesures, réduire les erreurs de mesure causées par la divergence du faisceau et mieux s'adapter aux échantillons de films minces de différentes épaisseurs et propriétés. Platine d'échantillon multifonctionnelle : équipée d'accessoires de diffraction à petit angle, la platine d'échantillon multifonctionnelle peut fournir divers environnements de test pour les échantillons, tels que le chauffage, le refroidissement, l'étirement in situ, etc. Cela rend plus pratique l'étude des changements structurels des matériaux dans différentes conditions externes et permet l'observation en temps réel de la réponse structurelle des matériaux pendant la température, la contrainte et d'autres changements. Les accessoires de diffractomètre à petit angle jouent un rôle important dans de nombreux domaines tels que la science des matériaux, la physique, la chimie et la biologie en réalisant une diffraction à petit angle et une mesure précise de l'épaisseur du film multicouche nano, offrant aux chercheurs un outil puissant pour une exploration approfondie des microstructures et des propriétés des matériaux.
Le diffractomètre à rayons X de table TDM-20 utilise un nouveau détecteur matriciel haute performance, et le chargement de ce détecteur a considérablement amélioré les performances globales de la machine. Le XRD de table TDM-20 est principalement utilisé pour l'analyse de phase des poudres, des solides et des matériaux similaires de type pâte. Le diffractomètre à rayons X de table TDM-20 utilise le principe de la diffraction des rayons X pour effectuer des analyses qualitatives ou quantitatives, des analyses de structure cristalline et d'autres matériaux polycristallins tels que des échantillons de poudre et des échantillons de métal. Le XRD de table est largement utilisé dans des secteurs tels que l'industrie, l'agriculture, la défense nationale, les produits pharmaceutiques, les minéraux, la sécurité alimentaire, le pétrole, l'éducation et la recherche scientifique.
Le diffractomètre à rayons X haute résolution TD-3700 est équipé d'une variété de détecteurs hautes performances tels que des détecteurs à réseau unidimensionnel à grande vitesse, des détecteurs bidimensionnels, des détecteurs SDD, etc. Le diffractomètre à rayons X TD-3700 intègre une analyse rapide, un fonctionnement pratique et la sécurité de l'utilisateur. L'architecture matérielle modulaire et le système logiciel personnalisé permettent d'obtenir une combinaison parfaite, ce qui rend son taux de défaillance extrêmement faible, ses performances anti-interférences bonnes et garantit un fonctionnement stable à long terme de l'alimentation haute tension. Le diffractomètre à rayons X TD-3700 peut augmenter l'intensité du calcul de diffraction de plusieurs dizaines de fois ou plus, obtenir des motifs de diffraction complets à haute sensibilité et haute résolution et une intensité de comptage plus élevée dans une période d'échantillonnage plus courte, et prend également en charge la numérisation des données de transmission. La résolution du mode de transmission est bien supérieure à celle du mode de diffraction, ce qui convient à l'analyse structurelle et à d'autres domaines. Le mode de diffraction a des signaux de diffraction puissants et est plus adapté à l'identification de phase de routine en laboratoire.
Le diffractomètre à rayons X monocristallin TD-5000 est principalement utilisé pour déterminer la structure spatiale tridimensionnelle et la densité du nuage électronique de substances cristallines telles que les complexes inorganiques, organiques et métalliques, et pour analyser la structure de matériaux spéciaux tels que le maclage, les cristaux non proportionnés, les quasi-cristaux, etc. Déterminez l'espace tridimensionnel précis (y compris la longueur de liaison, l'angle de liaison, la configuration, la conformation et même la densité électronique de liaison) de nouvelles molécules composées (cristallines) et la disposition réelle des molécules dans le réseau ; Il peut fournir des informations sur les paramètres de la cellule cristalline, le groupe spatial, la structure moléculaire cristalline, la liaison hydrogène intermoléculaire et les interactions faibles, ainsi que des informations structurelles telles que la configuration et la conformation moléculaires. Le diffractomètre à rayons X monocristallin est largement utilisé dans la recherche analytique en cristallographie chimique, biologie moléculaire, pharmacologie, minéralogie et science des matériaux. Le XRD monocristallin est un produit de haute technologie issu du projet national de développement d'instruments et d'équipements scientifiques majeurs du ministère de la Science et de la Technologie, dirigé par Dandong Tongda Technology Co., Ltd., comblant le vide dans le développement et la production de diffractomètre à rayons X monocristallin en Chine.
Le diffractomètre à rayons X sur poudre est principalement utilisé pour l'analyse qualitative et quantitative de phase, l'analyse de la structure cristalline, l'analyse de la structure des matériaux, l'analyse de l'orientation cristalline, la détermination des contraintes macroscopiques ou microscopiques, la détermination de la granulométrie, la détermination de la cristallinité, etc. d'échantillons de poudre, de blocs ou de films. Le diffractomètre à rayons X TD-3500 produit par Dandong Tongda Technology Co., Ltd. adopte un contrôle PLC Siemens importé, ce qui confère au diffractomètre à rayons X TD-3500 les caractéristiques de haute précision, de haute précision, de bonne stabilité, de longue durée de vie, de mise à niveau facile, d'utilisation simple et d'intelligence, et peut s'adapter de manière flexible aux analyses de test et à la recherche dans diverses industries !
Le diffractomètre à rayons X TD-3700 est un diffractomètre à rayons X hautes performances et multifonctionnel produit par Dandong Tongda Technology Co., Ltd. Ses principales caractéristiques sont des détecteurs hautes performances, diverses méthodes de balayage, un fonctionnement pratique et sûr, des performances stables et fiables. Pour plus de détails, veuillez vous référer au site Web de Dandong Tongda Technology Co., Ltd.
Le diffractomètre à rayons X haute puissance TDM-20 (DRX de paillasse) est principalement utilisé pour l'analyse de phase des poudres, des solides et des matériaux similaires de type pâte. Le principe de la diffraction des rayons X peut être utilisé pour l'analyse qualitative ou quantitative, l'analyse de la structure cristalline et d'autres matériaux polycristallins tels que les échantillons de poudre et les échantillons de métal. Il est largement utilisé dans des secteurs tels que l'industrie, l'agriculture, la défense nationale, les produits pharmaceutiques, les minéraux, la sécurité alimentaire, le pétrole, l'éducation et la recherche scientifique.
Le diffractomètre à rayons X est principalement utilisé pour l'analyse qualitative et quantitative de phase, l'analyse de la structure cristalline, l'analyse de la structure des matériaux, l'analyse de l'orientation cristalline, la détermination des contraintes macroscopiques ou microscopiques, la détermination de la granulométrie, la détermination de la cristallinité, etc. d'échantillons de poudre, de blocs ou de films. Il est produit par Dandong Tongda Technology Co., Ltd. et adopte un contrôle PLC Siemens importé, ce qui confère au diffractomètre à rayons X TD-3500 les caractéristiques de haute précision, de haute précision, de bonne stabilité, de longue durée de vie, de mise à niveau facile, d'utilisation simple et d'intelligence, et peut s'adapter de manière flexible aux analyses de test et à la recherche dans diverses industries !
Le diffractomètre à rayons X haute résolution de la série TD-3700 est un nouveau membre de la série TD, équipé d'une variété de détecteurs hautes performances tels que des détecteurs à réseau unidimensionnel à grande vitesse, des détecteurs bidimensionnels, des détecteurs SDD, etc. Il intègre une analyse rapide, une utilisation pratique et la sécurité de l'utilisateur. L'architecture matérielle modulaire et le système logiciel personnalisé permettent d'obtenir une combinaison parfaite, ce qui rend son taux de défaillance extrêmement faible, ses performances anti-interférences bonnes et garantit un fonctionnement stable à long terme de l'alimentation haute tension.