
Nouvelles
Le diffractomètre à rayons X entièrement automatisé par IA intègre parfaitement la manipulation de haute précision d'un bras robotisé basé sur un diffractomètre portable. Comparé aux diffractomètres traditionnels, il réduit considérablement les interventions manuelles, ce qui le rend idéal pour les scénarios de R&D exigeant des tests à haut débit et à haute répétabilité. Il est contrôlable à distance via un téléphone portable ou une application et dispose d'une technologie d'ouverture et de fermeture automatiques des portes. Grâce à ses capacités d'échantillonnage et d'analyse autonomes, il offre précision et praticité.
Les accessoires pour fibres utilisent la méthode de diffraction des rayons X (transmission) pour analyser la structure cristalline unique des fibres. Des paramètres tels que la cristallinité et la largeur à mi-hauteur (FWHM) permettent de déterminer le degré d'orientation de l'échantillon. Principales fonctions et caractéristiques des accessoires en fibre : Maintien de l'orientation des fibres : c'est l'aspect le plus critique. Les fibres présentent généralement une forte anisotropie, les cristaux étant préférentiellement alignés le long de leur axe. Les accessoires pour fibres permettent de redresser et de fixer les faisceaux de fibres, préservant ainsi leur orientation d'origine pour mesurer le degré et la distribution de l'orientation. Adaptation à différents formulaires d'échantillons : Fibre unique : extrêmement fine, nécessitant des pinces ou des cadres spéciaux pour la fixation. Faisceau de fibres : plusieurs fibres disposées en parallèle ; les accessoires de fibres doivent les aligner et les tendre uniformément. Tissu en fibre : les matériaux comme le tissu nécessitent un cadre plat pour les tendre. Activation des modes de test spéciaux : Mode de transmission : Convient aux faisceaux de fibres minces ou aux fibres individuelles. Les accessoires pour fibres comprennent un cadre dédié pour tendre la fibre, permettant aux rayons X de pénétrer directement dans l'échantillon. Mode Réflexion : Utilisé pour les faisceaux de fibres ou les tissus plus épais. Les accessoires pour fibres offrent une surface d'échantillonnage plane pour ce mode. Porte-échantillon de fibre : Il s'agit d'un simple cadre en métal ou en plastique muni de fentes ou de boutons. Pendant le fonctionnement, les deux extrémités du faisceau de fibres sont fixées au support, et les boutons sont tournés pour tendre la fibre et la maintenir droite et parallèle. Le support complet peut être placé dans le goniomètre DRX pour les tests, comme un échantillon standard. En résumé, les accessoires de fibres pour DRX sont des dispositifs de fixation d'échantillons spécialisés, conçus pour tester des échantillons fibreux à structures anisotropes. Leur fonction principale est de maintenir et de réguler l'orientation des fibres, tandis que des versions avancées permettent l'étirement in situ et d'autres fonctionnalités, fournissant ainsi des informations cruciales sur l'orientation des structures cristallines des fibres.
Dans le domaine de la recherche et du développement de batteries lithium-ion, la compréhension des variations dynamiques de la microstructure des matériaux d'électrodes lors des processus de charge et de décharge est cruciale. Les méthodes traditionnelles de détection hors ligne ne permettent pas de capturer ces changements en temps réel, tandis que l'émergence des techniques de caractérisation in situ offre aux chercheurs un outil puissant. Forte de son expertise en diffraction des rayons X (DRX), Dandong Tongda Technology Co., Ltd. a développé un accessoire de batterie in situ pour la recherche sur les batteries, offrant une fenêtre d'exploration efficace des processus réactionnels au sein de la « boîte noire » des batteries. Principe technique : Surveillance dynamique des changements à micro-échelle dans les matériaux des batteries L'objectif principal de la conception de l'accessoire de batterie d'origine de Dandong Tongda est de permettre la surveillance en temps réel de l'évolution de la structure cristalline des matériaux d'électrode à l'aide de la technologie de diffraction des rayons X (XRD) pendant que la batterie fonctionne normalement (pendant la charge et la décharge). Cet accessoire doit généralement fonctionner en synergie avec un système de test électrochimique (tel que le système de test de batterie LAND) et un diffractomètre à rayons X (tel que le modèle TD-3500 de Tongda Tech). Il forme une chambre de batterie spécialisée permettant aux rayons X de pénétrer et de sonder les matériaux des électrodes de la batterie pendant son fonctionnement. La clé réside dans la conception de fenêtres en matériaux (comme des fenêtres en béryllium) présentant des taux d'absorption des rayons X extrêmement faibles sur les composants de la batterie, garantissant ainsi une incidence et une émission efficaces des rayons X. Parallèlement, l'accessoire intègre les électrodes, l'isolation et les composants d'étanchéité nécessaires pour garantir des réactions électrochimiques normales et une excellente étanchéité pendant les tests. Fonctions clés et valeur de l'application La valeur de cet accessoire de batterie in situ réside dans sa capacité à aider les chercheurs à observer de manière intuitive et dynamique une série de changements microscopiques dans les matériaux des électrodes pendant les processus de charge et de décharge de la batterie : Observation en temps réel des processus de transition de phase : De nombreux matériaux d'électrodes subissent des transitions de phase lors de l'intercalation et de la désintercalation des ions lithium. La DRX in situ permet de capturer la formation, la disparition et la transformation de ces phases en temps réel, ce qui est essentiel pour comprendre les mécanismes réactionnels de la batterie. Suivi des variations des paramètres du réseau : Le suivi précis des variations des pics de diffraction XRD permet de calculer de subtiles variations des paramètres du réseau, reflétant sa dilatation et sa contraction. Ces variations sont étroitement liées aux indicateurs de performance de la batterie, tels que la tension et la durée de vie. Dévoilement des mécanismes de dégradation de la capacité : La dégradation de la capacité pendant le cyclage des batteries est souvent liée à la dégradation structurelle des matériaux des électrodes, à des réactions secondaires et à d'autres facteurs. La surveillance in situ permet de corréler la dégradation des performances électrochimiques avec les modifications structurelles, fournissant ainsi des informations directes pour améliorer les matériaux des batteries et optimiser leur conception. Accélération du développement de nouveaux matériaux : pour évaluer de nouveaux matériaux d'électrodes, la technologie XRD in situ peut rapidement fournir des informations clés sur la stabilité structurelle et les voies de réaction, accélérant ainsi le processus de R&D.
Entreprise reconnue dans le domaine des instruments de précision domestiques, Dandong Tongda Technology Co., Ltd. a lancé une gamme de porte-échantillons multifonctions. Grâce à leur haute précision, leur conception modulaire et leurs nombreuses applications, ces produits sont devenus des équipements incontournables pour l'analyse des matériaux, la diffraction des rayons X (DRX) et d'autres domaines. Fonctions principales : répondre à divers besoins analytiques Analyse de la structure des matériaux : Utilisé pour la détection de phase cristalline, l'analyse du degré d'orientation (texture) et les tests de contraintes résiduelles, prenant en charge l'analyse de matériaux tels que les métaux, les céramiques et les films minces. La rotation dans le plan (axe β) élimine l'orientation préférée, garantissant la reproductibilité des données d'intensité de diffraction. Fonction de simulation environnementale : Les modules optionnels à atmosphère haute température, basse température ou sous vide (par exemple, les dispositifs de contrôle de température à l'azote liquide) prennent en charge les tests de température variable de -196 °C à 1 000 °C, répondant aux exigences particulières des matériaux supraconducteurs à haute température, du traitement de surface des métaux, etc. Automatisation et intelligence : Le logiciel de support permet la numérisation automatique, la mesure multipoint et l'analyse de liaison de données, améliorant ainsi l'efficacité de la détection. Domaines d'application : de la recherche scientifique aux tests industriels Les porte-échantillons Dandong Tongda sont largement utilisés dans les domaines suivants : Science des matériaux : évaluation de la texture des tôles laminées, analyse de l'orientation des céramiques et tests de contraintes résiduelles des films minces. Industrie des semi-conducteurs : analyse de films multicouches sur substrats de silicium (par exemple, films magnétiques, revêtements durcis). Énergie et protection de l'environnement : Recherche microstructurale sur les films supraconducteurs à haute température, les matériaux de batterie et les catalyseurs. Enseignement supérieur et recherche scientifique : Enseignement expérimental et projets de recherche en cristallographie, analyse quantitative de phase, etc. Conclusion : Un outil indispensable pour la microanalyse des matériaux Le porte-échantillon multifonction Dandong Tongda, avec son contrôle de mouvement de haute précision, sa modularité et sa grande adaptabilité environnementale, est devenu un outil indispensable pour la microanalyse des matériaux. Ses atouts techniques reposent sur l'expertise accumulée par l'entreprise en technologie de diffraction des rayons X, alliant précision de niveau recherche et fiabilité industrielle pour aider les utilisateurs à percer les secrets des propriétés des matériaux à l'échelle microscopique. La platine porte-échantillons multifonctions est le « pied et la main » de l'observation et de la mesure de précision modernes, présentant précisément les échantillons dans le champ de vision des instruments d'analyse. Son choix détermine directement la faisabilité, l'efficacité et la fiabilité des expériences. Comprendre ses principes de base, ses classifications fonctionnelles et ses spécifications techniques est essentiel pour choisir et utiliser efficacement cet équipement.
Spectromètre Dandong Tongda XAFS : un outil d'analyse de la structure des matériaux pour le laboratoire Analyse précise de la structure du matériau atomique sans dépendance aux sources de rayonnement synchrotron. La spectroscopie de structure fine par absorption des rayons X (XAFS) est une technique importante pour étudier les structures atomiques et électroniques locales des matériaux, avec de larges applications en catalyse, en recherche énergétique et en science des matériaux. La méthodologie XAFS conventionnelle repose principalement sur des sources de rayonnement synchrotron, ce qui présente des défis tels qu'une disponibilité limitée du faisceau, des procédures d'application complexes et la nécessité de transporter les échantillons vers des installations scientifiques de grande envergure pour analyse. La structure fine d'absorption des rayons X développée par Dandong Tongda Technology Co., Ltd. vise à intégrer cette capacité analytique sophistiquée dans les environnements de laboratoire standard. Principaux avantages et valeur pratique La conception de cet instrument répond à plusieurs défis critiques auxquels les chercheurs sont confrontés : Alternative en laboratoire au rayonnement synchrotron : élimine la dépendance traditionnelle aux sources de rayonnement synchrotron, permettant aux chercheurs d'effectuer efficacement des tests XAFS de routine dans leurs propres laboratoires, améliorant ainsi considérablement la productivité de la recherche. Capacités de test in situ : prend en charge l'intégration de diverses chambres d'échantillonnage in situ (par exemple, électrochimiques, à température variable), permettant la surveillance en temps réel des changements dynamiques dans la structure atomique locale du matériau dans des conditions opérationnelles simulées (telles que les réactions catalytiques ou les processus de charge/décharge de la batterie), fournissant des informations précieuses sur les mécanismes de réaction. Fonctionnement automatisé pour une efficacité améliorée : une tourelle d'échantillons à 18 positions permet le changement automatique d'échantillons, facilitant la mesure automatisée continue de plusieurs échantillons et le fonctionnement sans pilote, simplifiant ainsi le criblage d'échantillons par lots et les expériences in situ prolongées. Champ d'application étendu Le spectromètre TD-XAFS trouve des applications dans de nombreux domaines nécessitant une étude détaillée des structures locales des matériaux : Nouveaux matériaux énergétiques : analyse des changements d'état de valence et de la stabilité structurelle des matériaux d'électrodes de batteries lithium-ion pendant les processus de charge/décharge ; étude des environnements de coordination sur les sites actifs catalytiques des piles à combustible. Science de la catalyse : Particulièrement adapté à l'étude des structures de coordination précises des nanocatalyseurs et des catalyseurs à atome unique, des caractéristiques du site actif et de leurs interactions avec les matériaux de support, même à de faibles charges métalliques (<1%). Science des matériaux : étude des structures désordonnées, des matériaux amorphes, des effets de surface/interface et des processus de transition de phase dynamique. Sciences de l'environnement : Analyse des états de valence et des structures de coordination des éléments métalliques lourds dans les échantillons environnementaux (par exemple, sol, eau), essentiels pour évaluer la toxicité et la mobilité. Macromolécules biologiques : étude des structures électroniques et des configurations géométriques des centres actifs métalliques dans les métalloprotéines et les enzymes. Résumé Le spectromètre TD-XAFS de Dandong Tongda constitue une plateforme d'essai de paillasse domestique hautes performances, conçue pour les universités, les instituts de recherche et les centres de R&D des entreprises. Il intègre avec succès des capacités de niveau synchrotron dans les laboratoires conventionnels, réduisant ainsi considérablement les obstacles à l'accès à la technologie XAFS. Cet instrument offre aux chercheurs des outils pratiques, efficaces et flexibles pour l'analyse de la structure des matériaux microscopiques, constituant une solution pratique pour les scientifiques explorant le monde microscopique de la matière.
Dans des domaines de recherche tels que les sciences de la vie, la radiobiologie et la lutte antiparasitaire, des méthodes d'irradiation précises, sûres et contrôlables sont essentielles à de nombreuses expériences critiques. Forte de son expertise en technologie des rayons X, Dandong Tongda Technology Co., Ltd. a développé l'irradiateur à rayons X WBK-01, conçu pour offrir une alternative moderne aux sources d'isotopes radioactifs traditionnelles à divers laboratoires. I. Principe fondamental et objectif de conception L'équipement fonctionne en accélérant des électrons via un champ électrique haute tension pour frapper une cible métallique (par exemple, une cible en or), générant ainsi des rayons X de haute énergie. Cette conception de « source de rayonnement générée électriquement » évite fondamentalement l'utilisation d'isotopes radioactifs comme le cobalt 60 (Co-60) ou le césium 137 (Cs-137), éliminant ainsi la conservation à long terme, les coûts de démantèlement importants et les risques potentiels pour la sécurité associés aux matières premières. II. Principales caractéristiques du produit Haute sécurité : Aucun rayonnement hors tension : Les rayons X ne sont générés que lorsque l'équipement est sous tension et en fonctionnement. Aucun rayonnement résiduel n'est émis après utilisation, ce qui réduit considérablement les coûts de sécurité et de gestion du laboratoire. Verrouillages de sécurité multiples : équipés de plusieurs fonctions de protection de sécurité, notamment le verrouillage du fonctionnement des portes, l'arrêt d'urgence et la protection contre les surdoses, garantissant la sécurité des opérateurs et de l'environnement. Contrôle précis et bonne reproductibilité : Utilise un système de contrôle numérique, permettant aux utilisateurs de définir avec précision les paramètres d'irradiation, notamment la tension (kV), le courant (mA) et le temps d'irradiation, via une interface à écran tactile. Le système permet une production de dose stable, garantissant l’uniformité des conditions expérimentales et la reproductibilité des résultats. Utilisation facile et entretien simple : L'interface utilisateur est simple et intuitive, facile à apprendre et à utiliser, abaissant la barrière à l'utilisation. Comparé aux sources d'isotopes qui nécessitent un remplacement régulier et une surveillance de la désintégration, la maintenance principale de cet équipement se concentre sur le remplacement périodique du tube à rayons X, ce qui entraîne des coûts de maintenance à long terme relativement fixes et gérables. Compatibilité des échantillons flexibles : La chambre d'irradiation est conçue pour accueillir divers échantillons, des boîtes de culture cellulaire et des plaques multipuits aux petits animaux (par exemple, les mouches des fruits, les moustiques ou les souris). La platine d'échantillonnage peut être conçue pour tourner, garantissant ainsi l'uniformité de la distribution de la dose de rayonnement. III. Principaux scénarios d'application Recherche biomédicale : utilisée pour créer des modèles animaux immunodéficients (par exemple, l'ablation de cellules de moelle osseuse chez la souris), l'induction de l'apoptose cellulaire, la synchronisation des cycles cellulaires, la recherche en oncologie et le prétraitement pour la transplantation de cellules souches. Technique de l'insecte stérile (TIS) : Il s'agit d'un domaine d'application important. Elle permet d'irradier les pupes de ravageurs agricoles (par exemple, la mouche méditerranéenne des fruits) ou de moustiques afin de les rendre stériles, contribuant ainsi à des programmes de contrôle des populations écologiques et non polluants. Recherche sur la modification des matériaux : peut être utilisée pour étudier les effets des rayons X sur les propriétés de divers matériaux (par exemple, polymères, semi-conducteurs). IV. Paramètres typiques du modèle (en utilisant WBK-01 comme exemple) Tension du tube à rayons X : réglable en fonction des besoins, généralement dans une plage de plusieurs dizaines à plusieurs centaines de kilovolts (kV), pour s'adapter à différentes profondeurs de pénétration et besoins de débit de dose. Débit de dose : peut être ajusté en fonction de la tension, du courant et de la distance pour répondre aux exigences spécifiques de différents protocoles expérimentaux. Uniformité : assurée par la conception du système optique et un mécanisme de rotation de l'échantillon, garantissant une distribution uniforme de la dose dans le champ d'irradiation pour des expériences fiables. Résumé L'intérêt principal de l'irradiateur à rayons X Dandong Tongda réside dans le remplacement des sources d'isotopes radioactifs peu pratiques par une source de rayons X électriquement contrôlée et sûre. Loin de rechercher des fonctionnalités excessives, il vise à fournir un outil d'irradiation stable, fiable, conforme et facile à gérer pour la recherche scientifique et les applications industrielles. Pour les laboratoires recherchant des alternatives aux isotopes ou envisageant de créer de nouvelles plateformes d'irradiation, cet équipement pratique mérite d'être évalué et pris en considération par les utilisateurs en recherche fondamentale et appliquée.
L'analyseur de contraintes résiduelles multifonctionnel développé par Dandong Tongda Technology Co., Ltd. est conçu pour répondre aux besoins de mesures rapides et précises en laboratoire comme sur le terrain. Basé principalement sur le principe de la diffraction des rayons X, il permet des contrôles non destructifs de l'état des contraintes résiduelles à l'intérieur des matériaux. Analyse polyvalente tout-en-un Cet analyseur intègre plusieurs fonctions d'analyse de matériaux, améliorant considérablement l'utilité et l'efficacité de l'équipement : Analyse des contraintes résiduelles : prend en charge divers modes de mesure tels que l'inclinaison oméga standard, l'inclinaison psi standard et l'oscillation standard, capables de déterminer les contraintes principales et les contraintes de cisaillement pour une évaluation complète de l'état de contrainte. Analyse de l'austénite retenue : utilise la méthode des quatre pics pour les tests d'austénite retenue, avec un calcul de données entièrement automatisé pour des résultats rapides. Analyse de phase par diffraction : utilisée pour analyser les structures cristallines, la composition chimique et la distribution, aidant les chercheurs à obtenir des informations plus approfondies sur la constitution des matériaux. Analyse de la granulométrie : prend en charge l'évaluation de la granulométrie de l'échelle nanométrique à l'échelle submicronique, particulièrement adaptée aux grains fins ≤ 200 nm. Caractéristiques techniques et performances Cet instrument dispose de multiples caractéristiques techniques visant à assurer précision, stabilité et facilité d'utilisation : Mesure et contrôle de haute précision : utilise un système d'asservissement vectoriel en boucle fermée de haute précision pour garantir la précision et la répétabilité des mesures. Acquisition de données efficace : équipé d'un détecteur linéaire à bande de silicium multicanal, qui offre des performances sans bruit, une mesure de haute intensité et une collecte de données rapide pour améliorer l'efficacité de la détection. Conception portable : présente une construction légère, ce qui la rend adaptée non seulement aux environnements de laboratoire mais également aux mesures rapides sur site, s'adaptant à divers scénarios de test. Fonctionnement convivial : intègre le système d'exploitation Windows ou des fonctions d'automatisation, prenant en charge les tests en un clic et l'affichage des résultats en temps réel, abaissant ainsi la barrière opérationnelle. Modularité et sécurité : Utilise un système de contrôle PLC de conception modulaire pour une utilisation aisée et des performances stables. Côté sécurité, sa conception à rayons X à faible consommation d'énergie est conforme aux normes de sécurité en vigueur, avec des niveaux de rayonnement nettement inférieurs à la limite de dose annuelle pour le public. Larges domaines d'application L'analyseur de contraintes résiduelles multifonctionnel de Dandong Tongda a de nombreuses applications, couvrant presque tous les secteurs industriels et les institutions de recherche nécessitant une évaluation des propriétés mécaniques des matériaux : Contrôle de la qualité de fabrication : utilisé pour détecter les contraintes résiduelles dans les pièces embouties, moulées et laminées pendant le traitement. Industrie automobile : teste les contraintes résiduelles dans les composants critiques tels que les arbres à cames et les bielles pour garantir la fiabilité et la durabilité. Aérospatiale : Évalue les charges de travail dans les zones critiques des matériaux aérospatiaux pour évaluer la sécurité. Recherche en science des matériaux : applicable à divers matériaux métalliques (par exemple, acier au carbone, acier allié, alliage de titane, matériaux à base de nickel), verre et matériaux composites pour l'analyse des contraintes résiduelles, de l'austénite retenue, de la phase et de la taille des grains. L'analyseur de contraintes résiduelles multifonctionnel de Dandong Tongda Technology Co., Ltd. démontre l'expertise technique de l'entreprise dans le domaine des essais de matériaux grâce à l'intégration de multiples fonctions analytiques. Cet instrument offre aux ingénieurs et aux chercheurs un aperçu de l'état de contrainte intrinsèque des matériaux, contribuant ainsi au contrôle de la qualité des produits à la source, à l'optimisation des paramètres de procédé et, par conséquent, à l'amélioration de la fiabilité et de la durabilité des produits.